Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources.
نویسندگان
چکیده
We present a novel microfluidic device that enables high sensitive analyses of the chemotactic response of motile bacterial cells (Escherichia coli) that swim toward a preferred nutrient by sorting and concentrating them. The device consists of the Y-shaped microchannel that has been widely used in chemotaxis studies to attract cells toward a high concentration and a concentrator array integrated with arrowhead-shaped ratchet structures beside the main microchannel to trap and accumulate them. Since the number of accumulated cells in the concentrator array continuously increases with time, the device makes it possible to increase the sensitivity of detecting chemotactic responses of the cells about 10 times greater than Y-shaped channel devices in 60 min. In addition, the device can characterize the relative chemotactic sensitivity of chemoreceptors to chemoeffectors by comparing the number of cells in the concentrator array at different distances from the channel junction. Since the device allows the analysis of both the chemotactic responses and the sensitivity of chemoreceptors with high resolution, we believe that not only can the device be broadly used for various microbial chemotaxis assays but it also can further the advancement of microbiology and even synthetic biology.
منابع مشابه
Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing
Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses ...
متن کاملMicrofluidics for bacterial chemotaxisw
Microfluidics is revolutionizing the way we study the motile behavior of cells, by enabling observations at high spatial and temporal resolution in carefully controlled microenvironments. An important class of such behavior is bacterial chemotaxis, which plays a fundamental role in a broad range of processes, including disease pathogenesis, biofilm formation, bioremediation, and even carbon cyc...
متن کاملChemical probes of bacterial signal transduction reveal that repellents stabilize and attractants destabilize the chemoreceptor array.
The signal transduction cascade responsible for bacterial chemotaxis serves as a model for understanding how cells perceive and respond to their environments. Bacteria react to chemotactic signals by migrating toward attractants and away from repellents. Recent data suggest that the amplification of attractant stimuli depends on receptor collaboration: occupied and unoccupied chemoreceptors act...
متن کاملNetworked Chemoreceptors Benefit Bacterial Chemotaxis Performance
Motile bacteria use large receptor arrays to detect and follow chemical gradients in their environment. Extended receptor arrays, composed of networked signaling complexes, promote cooperative stimulus control of their associated signaling kinases. Here, we used structural lesions at the communication interface between core complexes to create an Escherichia coli strain with functional but disp...
متن کاملBacterial chemoreceptors: high-performance signaling in networked arrays.
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Analyst
دوره 136 16 شماره
صفحات -
تاریخ انتشار 2011